Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 105(21-22): 8297-8311, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34609523

RESUMO

Staphylococcus aureus is a serious pathogen unleashing its virulence through several classes of exotoxins such as hemolysins and enterotoxins. In this study, we designed a novel multi-antigen subunit vaccine which can induce innate, humoral and cellular immune responses. Alpha hemolysin, enterotoxins A and B were selected as protective antigens for combining into a triple antigen chimeric protein (HAB). Immunoinformatics analysis predicted HAB protein as a suitable vaccine candidate for inducing both humoral and cellular immune responses. Tertiary structure of the HAB protein was predicted and validated through computational approaches. Docking studies were performed between the HAB protein and mice TLR2 receptor. Furthermore, we constructed and generated recombinant HAB (r-HAB) protein in E. coli and studied its toxicity, immunogenicity and protective efficacy in a mouse model. Triple antigen chimeric protein (r-HAB) was found to be highly immunogenic in mouse as the anti-r-HAB hyperimmune serum was strongly reactive to all three native exotoxins on Western blot. In vitro toxin neutralization assay using anti-r-HAB antibodies demonstrated > 75% neutralization of toxins on RAW 264.7 cell line. Active immunization with r-HAB toxoid gave ~ 83% protection against 2 × lethal dosage of secreted exotoxins. The protection was mediated by induction of strong antibody responses that neutralized the toxins. Passive immunization with anti-r-HAB antibodies gave ~ 50% protection from lethal challenge. In conclusion, in vitro and in vivo testing of r-HAB found the molecule to be nontoxic, highly immunogenic and induced excellent protection towards native toxins in actively immunized and partial protection to passively immunized mice groups. KEY POINTS: • HAB protein was computationally designed to induce humoral and cellular responses. • r-HAB protein was found to be nontoxic, immunogenic and protective in mouse model. • r-HAB conferred protection against lethal challenge in active and passive immunization.


Assuntos
Toxinas Bacterianas , Toxemia , Animais , Anticorpos Antibacterianos , Toxinas Bacterianas/genética , Enterotoxinas , Escherichia coli/genética , Camundongos , Camundongos Endogâmicos BALB C , Staphylococcus aureus , Toxoides
2.
Appl Microbiol Biotechnol ; 104(21): 9387-9398, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32960294

RESUMO

In the present study, immunoglobulin Y (IgY) antibodies were raised in hens against the surface staphylococcal protein A (SpA) of Staphylococcus aureus. Anti-SpA IgY were tested in vitro for diagnostic applications, bacteriostatic, and biofilm inhibition effects. A specific and sensitive immunocapture PCR (IPCR) was developed to detect S. aureus from food, clinical, and environmental samples. Anti-SpA IgY were used for capturing S. aureus cells from different matrices. Chicken antibodies were chosen over mammalian antibodies based on its inertness to immunoglobulin (Ig)-binding property of SpA protein. No cross-reactivity was encountered with closely related Gram-positive and Gram-negative food pathogens. Inter-assay variation is < 10%. The assay was found suitable for testing on solid and liquid food samples, skin, and nasal swabs. The assay showed limit of detection of ≥ 102 CFU/mL from broth cultures and 102 to 103 CFU/ml from diverse natural samples. This assay overcomes the false positives commonly encountered while using mammalian immunoglobulins (IgG). Anti-SpA IgY antibodies were tested for their bacteriostatic effect on the growth of S. aureus. IgY antibodies at a concentration of 150 µg/ml inhibited the growth of S. aureus completely indicating the potential of IgY antibodies in neutralization of infectious pathogens. Similarly, anti-SpA IgY at MIC50 concentration reduced biofilm formation by ~ 45%. In view of advantages offered by IgY antibodies for specific detection of S. aureus in immunocapture PCR (IPCR) assay and in vitro neutralization potential of S. aureus, we recommend using IgY over conventional IgG of mammals involving S. aureus and its antigens. KEY POINTS: • IPCR with anti-SpA IgY for S. aureus was specific and sensitive for natural samples. • Anti-SpA IgY at 150 ug/ml displayed growth inhibition of S. aureus strains temporarily. • Anti-SpA IgY at MIC50 concentrations inhibited the biofilm formation partially.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Galinhas , Feminino , Imunoglobulinas , Infecções Estafilocócicas/diagnóstico , Proteína Estafilocócica A
3.
Appl Microbiol Biotechnol ; 104(6): 2651-2661, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31997109

RESUMO

In the present study, we have generated a murine monoclonal antibody (mAb) named Sal-06 by using the crude outer membrane protein preparation of Salmonella enteric subsp. enterica serovar Typhimurium ATCC 14028 strain as antigen. Sal-06mAb belonging to IgG1 isotype demonstrated broad cross-reactivity to standard and isolated strains of genus Salmonella and others such as Escherichia coli, Klebsiella pneumonia, and Proteus mirabilis. Cross-reactivity across several bacterial genera indicated that the epitopes reactive to Sal-06mAb are conserved among these members. Neutralizing effects of Sal-06mAb on Salmonella growth and survival was evaluated in vitro using bacteriostatic and bactericidal activity with and without complement and bacterial invasion inhibition assay. Sal-06mAb demonstrated a bacteriostatic effect on the growth of S. typhimurium ATCC 14028 strain which is both time and concentration (of mAb) dependent. It was also found that the bacterial growth inhibition was complement independent. When the bacterial cells were preincubated with Sal-06mAb, it reduced the adherence and invasion of bacterial cells into A549 epithelial cell line. This was confirmed by CFU count analysis, phase contrast, and fluorescence microscopy. Scanning electron microscope (SEM) imaging confirmed the antimicrobial effects of Sal-06mAb on S. typhimurium ATCC 14028. The development of broadly reactive and cross protective Sal-06mAb opens new possibilities for immunotherapy of sepsis caused by Gram-negative Enterobacteriaceae members.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Salmonella typhimurium/imunologia , Células A549 , Animais , Antígenos de Bactérias/imunologia , Aderência Bacteriana , Proteínas do Sistema Complemento , Reações Cruzadas , Enterobacteriaceae/imunologia , Escherichia coli/imunologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C
4.
Curr Pharm Des ; 24(27): 3162-3171, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30014799

RESUMO

BACKGROUND: Gastrointestinal (GI) diseases are a major cause of emergency department visits requiring hospitalizations leading to considerable burden on global economy. Several factors contribute to the onset of gastrointestinal diseases such as pathogens (parasites, bacteria, virus, toxins etc.), autoimmune disorders and severe inflammation of intestine. OBJECTIVE: One common feature among all these diseases is the dysentery and alteration of gut microbiota composition (gut dysbiosis). Apart from conventional therapies such as antibiotics and ORS supplementation, gut microbiota modulation with probiotic supplementation has emerged as a successful and healthy alternative in mitigating GI diseases. In this review our goal is to discuss the causes of gastrointestinal diseases and the present state of various therapeutic strategies such as probiotics as live biotherapeutics and Fecal Microbial Transplants (FMT's). CONCLUSION: Several reports and clinical trials point out to the beneficial effects of probiotics in modulating the gut microbiota and improving the side effects of gastrointestinal diseases. Live biotherapeutics and FMT's could be suitable and successful alternatives to conventional therapies in mitigating the gastrointestinal pathogens.


Assuntos
Gastroenteropatias/tratamento farmacológico , Probióticos/uso terapêutico , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...